Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396866

RESUMO

Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (ßNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.


Assuntos
Colecalciferol , Síndrome do Intestino Irritável , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Síndrome do Intestino Irritável/tratamento farmacológico , Eixo Encéfalo-Intestino , Citocinas , Encéfalo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
2.
Int J Pharm ; 647: 123529, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37858636

RESUMO

Budesonide (BUD) is a glucocorticosteroid used to treat chronic obstructive pulmonary disease. Despite this, it is a hydrophobic compound with low bioavailability. To address these hurdles, non-toxic and biocompatible ßcyclodextrin-based nanosponges (ßCD-NS) were attempted. BUD was loaded on five different ßCD-NS at four different ratios. NS with 1,1'-carbonyldiimidazole (CDI) as a crosslinking agent, presented a higher encapsulation efficiency ( Ì´ 80%) of BUD at 1:3 BUD: ßCD-NS ratio (BUD-ßCD-NS). The optimized formulations were characterized by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), water absorption capacity (WAC), scanning electron microscopy (SEM), X-ray powder diffraction studies (XRD), particle size, zeta potential, encapsulation efficiency, in vitro and in vivo release studies, acute toxicity study, solid-state characterization, and aerosol performance. In vitro-in vivo correlation and cytotoxicity of the formulations on alveolar cells in vitro were further determined. In vitro and in vivo studies showed almost complete drug release and drug absorption from the lungs in the initial 2 h for pure BUD, which were sustained up to 12 h from BUD loaded into nanosponges (BUD-ßCD-NS). Acute toxicity studies and in vitro cytotoxicity studies on alveolar cells proved the safety of BUD-ßCD-NS. Several parameters, including particle size, median mass aerodynamic diameter, % fine particle fraction, and % emitted dose, were evaluated for aerosol performance, suggesting the capability of BUD-ßCD-NS to formulate as a dry powder inhaler (DPI) with a suitable diluent. To sum up, this research will offer new insights into the future advancement of ßCD-NS as drug delivery systems for providing controlled release of therapeutic agents against pulmonary disease.


Assuntos
Budesonida , Aerossóis e Gotículas Respiratórios , Pulmão , Administração por Inalação , Inaladores de Pó Seco , Aerossóis , Tamanho da Partícula
3.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629831

RESUMO

Due to their high energy and power density, lithium-ion batteries (LIBs) have gained popularity in response to the demand for effective energy storage solutions. The importance of the electrode architecture in determining battery performance highlights the demand for optimization. By developing useful organic polymers, cyclodextrin architectures have been investigated to improve the performance of Li-based batteries. The macrocyclic oligosaccharides known as cyclodextrins (CDs) have relatively hydrophobic cavities that can enclose other molecules. There are many industries where this "host-guest" relationship has been found useful. The hydrogen bonding and suitable inner cavity diameter of CD have led to its selection as a lithium-ion diffusion channel. CDs have also been used as solid electrolytes for solid-state batteries and as separators and binders to ensure adhesion between electrode components. This review gives a general overview of CD-based materials and how they are used in battery components, highlighting their advantages.

4.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987322

RESUMO

Melatonin is a neurohormone that ameliorates many health conditions when it is administered as a drug, but its drawbacks are its oral and intravenous fast release. To overcome the limitations associated with melatonin release, cyclodextrin-based nanosponges (CD-based NSs) can be used. Under their attractive properties, CD-based NSs are well-known to provide the sustained release of the drug. Green cyclodextrin (CD)-based molecularly imprinted nanosponges (MIP-NSs) are successfully synthesized by reacting ß-Cyclodextrin (ß-CD) or Methyl-ß Cyclodextrin (M-ßCD) with citric acid as a cross-linking agent at a 1:8 molar ratio, and melatonin is introduced as a template molecule. In addition, CD-based non-molecularly imprinted nanosponges (NIP-NSs) are synthesized following the same procedure as MIP-NSs without the presence of melatonin. The resulting polymers are characterized by CHNS-O Elemental, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric (TGA), Differential Scanning Calorimetry (DSC), Zeta Potential, and High-Performance Liquid Chromatography (HPLC-UV) analyses, etc. The encapsulation efficiencies are 60-90% for MIP-NSs and 20-40% for NIP-NSs, whereas melatonin loading capacities are 1-1.5% for MIP-NSs and 4-7% for NIP-NSs. A better-controlled drug release performance (pH = 7.4) for 24 h is displayed by the in vitro release study of MIP-NSs (30-50% released melatonin) than NIP-NSs (50-70% released melatonin) due to the different associations within the polymeric structure. Furthermore, a computational study, through the static simulations in the gas phase at a Geometry Frequency Non-covalent interactions (GFN2 level), is performed to support the inclusion complex between ßCD and melatonin with the automatic energy exploration performed by Conformer-Rotamer Ensemble Sampling Tool (CREST). A total of 58% of the CD/melatonin interactions are dominated by weak forces. CD-based MIP-NSs and CD-based NIP-NSs are mixed with cream formulations for enhancing and sustaining the melatonin delivery into the skin. The efficiency of cream formulations is determined by stability, spreadability, viscosity, and pH. This development of a new skin formulation, based on an imprinting approach, will be of the utmost importance in future research at improving skin permeation through transdermal delivery, associated with narrow therapeutic windows or low bioavailability of drugs with various health benefits.

5.
Int J Pharm ; 637: 122883, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36972777

RESUMO

Within of the increasing requirement of alternative approaches to fight emerging infections, nano-photosensitisers (nanoPS) are currently designed with the aim to optimize the antimicrobial photodynamic (aPDT) efficacy. The utilize of less expensive nanocarriers prepared by simple and eco-friendly methodologies and commercial photosensitisers are highly desiderable. In this direction, here we propose a novel nanoassembly composed of water soluble anionic polyester ß-CD nanosponges (ß-CD-PYRO hereafter named ßNS) and the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4- yl)porphine (TMPyP). Nanoassemblies were prepared in ultrapure water by mixing PS and ßNS, by exploiting their mutual electrostatic interaction, and characterized by various spectroscopic techniques such as UV/Vis, Steady-State and Time Resolved Fluorescence, Dynamic Light Scattering and ζ-potential. NanoPS produce appreciable amount of single oxygen similar to free porphyrin and a prolonged stability after 6 days of incubations in physiological conditions and following photoirradiation. Antimicrobial photodynamic action against fatal hospital-acquired infections such as P. aeruginosa and S. aureus was investigated by pointing out the ability of cationic porphyrin loaded- CD nanosponges to photo-kill bacterial cells at prolonged time of incubation and following irradiation (MBC99 = 3.75 µM, light dose = 54.82 J/cm2).


Assuntos
Anti-Infecciosos , Ciclodextrinas , Fotoquimioterapia , Porfirinas , Ciclodextrinas/química , Staphylococcus aureus , Porfirinas/farmacologia , Porfirinas/química , Água/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
6.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834707

RESUMO

The COVID-19 pandemic showed the crucial significance of investing in and conducting research on infectious diseases [...].


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2 , Pandemias
7.
Colloids Surf B Biointerfaces ; 222: 113101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529037

RESUMO

Many nutraceuticals present problems due to their poor water solubility or stability, which prevents the final bioactivity achievement. For that reason, the oral administration of KYNA complexed with HPß-CD and ßNS-CDI nanosponges was evaluated in mice. The solvent-free technology was used to prepare the complexes in a complete comparison between kneading in ball milling and classical inclusion complex preparation. The solvent-free ones showed higher strength and efficiency with ball milling, considerably reducing time. A 50 mg KYNA/kg/day dosage was orally administered in formulations showing a higher bioavailability when the nutraceutical was complexed with ßNS-CDI compared to HPß-CD and free KYNA, respectively. Several antioxidant statuses demonstrated a higher global antioxidant level perfectly related to bioavailability. Finally, the formulation of KYNA reduced the temporal oxidative stress damage in the kidney and liver, making ßNS-CDI the best formulation. These results suggest an important future application of cyclodextrin-based nanosponges for the oral delivery of nutraceuticals and their stabilization.


Assuntos
Ciclodextrinas , Camundongos , Animais , Ácido Cinurênico , Solventes , Disponibilidade Biológica , Antioxidantes/farmacologia , Solubilidade
8.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559184

RESUMO

In this article, we used monolayer two dimensional (2D) and 3D multicellular spheroid models to improve our understanding of the gene delivery process of a new modified cationic hyper-branched cyclodextrin-based polymer (Ppoly)-loaded plasmid encoding Enhanced Green Fluorescent Protein (EGFP). A comparison between the cytotoxicity effect and transfection efficiency of the plasmid DNA (pDNA)-loaded Ppoly system in 2D and 3D spheroid cells determined that the transfection efficiency and cytotoxicity of Ppoly-pDNA nanocomplexes were lower in 3D spheroids than in 2D monolayer cells. Furthermore, histopathology visualization of Ppoly-pDNA complex cellular uptake in 3D spheroids demonstrated that Ppoly penetrated into the inner layers. This study indicated that the Ppoly, as a non-viral gene delivery system in complex with pDNA, is hemocompatible, non-toxic, high in encapsulation efficiency, and has good transfection efficiency in both 2D and 3D cell cultures compared to free pDNA and lipofectamine (as the control).

9.
Bioengineering (Basel) ; 9(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36550971

RESUMO

This study tested the anticoagulant effect of cyclodextrin (CD) hyper-branched-based polymers (HBCD-Pols). These polymers were synthesized and tested for their coagulant characteristics in vitro and in vivo. Due to their polymeric structure and anionic nature, the polymers can chelate Ca2+, reducing the free quantity in blood. HBCD-Pol increased the blood clotting time, PT, and aPTT 3.5 times over the control, showing a better effect than even ethylenediaminetetraacetic acid (EDTA), as occured with recalcification time as well. A titration of HBCD-Pol and EDTA showed exciting differences in the ability to complex Ca2+ between both materials. Before executing in vivo studies, a hemocompatibility study was carried out with less than 5% red blood cell hemolysis. The fibrinogen consumption and bleeding time were analyzed in vivo. The fibrinogen was considerably decreased in the presence of HBCD-Pol in a higher grade than EDTA, while the bleeding time was longer with HBCD-Pols. The results demonstrate that the anticoagulant effect of this HBCD-Pol opens novel therapy possibilities due to the possible transport of drugs in this carrier. This would give combinatorial effects and a potential novel anticoagulant therapy with HBCD-Pol per se.

10.
Gels ; 8(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005092

RESUMO

Macrolides are widely used antibiotics with a broad spectrum of activity. The development of drug carriers to deliver this type of antibiotics has attracted much research. The present study aims at developing new swellable dextrin-based nanohydrogels for the topical delivery of rokitamycin, as model macrolide. Rokitamycin is a synthetic analogous of macrolides with advantageous characteristics as far as bacterial uptake and post-antibiotic effect are concerned. It is also indicated for the treatment of severe infections caused by Acanthamoeba and for topical infections. The nanohydrogels have been prepared from two types of cross-linked polymers obtained by using ß-cyclodextrin or Linecaps® was provided by the Roquette Italia SPA (Cassano Spinola, Al, Italy) as building blocks. The cross-linked polymers have been then formulated into aqueous nanosuspensions refined and tuned to achieve the incorporation of the drug. Cross-linked ß-cyclodextrin (ß-CD) and Linecaps® (LC) polymers formed dextrin-based nanohydrogels with high swelling degree and mucoadhesion capability. Rokitamycin was loaded into the nanohydrogels displaying an average size around 200 nm with negative surface charge. In vitro kinetic profiles of free and loaded drug in nanohydrogels were compared at two pH levels. Interestingly, a sustained and controlled release was obtained at skin pH level due to the high degree of swelling and a pH responsiveness possibly. The results collected suggest that these nanohydrogels are promising for the delivery of rokitamycin and may pave the way for the topical delivery of other macrolide antibiotics.

11.
Pharmaceutics ; 14(5)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35631645

RESUMO

This study aimed to design and fabricate novel hydroxypropyl-ß-cyclodextrin-based hypercrosslinked polymers, called nanosponges, as carriers for anticancer hydrophobic agents and compare them with host-guest complexes of hydroxypropyl-ß-cyclodextrin, a remarkable solubilizer, to investigate their application in improving the pharmaceutical properties of the flavonoid naringenin, a model hydrophobic nutraceutical with versatile anticancer effects. For this purpose, three new nanosponges, crosslinked with pyromellitic dianhydride, citric acid, and carbonyldiimidazole, were fabricated. The carbonate nanosponge synthesized by carbonyldiimidazole presented the highest naringenin loading capacity (≈19.42%) and exerted significantly higher antiproliferative effects against MCF-7 cancer cells compared to free naringenin. Additionally, this carbonate nanosponge formed a stable nanosuspension, providing several advantages over the naringenin/hydroxypropyl-ß-cyclodextrin host-guest complex, including an increase of about 3.62-fold in the loading capacity percentage, sustained released pattern (versus the burst pattern of host-guest complex), and up to an 8.3-fold increase in antiproliferative effects against MCF-7 cancer cells. Both naringenin-loaded carriers were less toxic to L929 murine fibroblast normal cells than MCF-7 cancer cells. These findings suggest that hydroxypropyl-ß-cyclodextrin-based carbonate nanosponges could be a good candidate as a drug delivery system with potential applications in cancer treatment.

12.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456919

RESUMO

Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.


Assuntos
Ciclodextrinas , Dextrinas , Disponibilidade Biológica , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Água
13.
Nanomaterials (Basel) ; 12(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269242

RESUMO

Magnetically driven nanosponges with potential application as targeted drug delivery systems were prepared via the addition of magnetite nanoparticles to the synthesis of cyclodextrin and maltodextrin polymers crosslinked with 1,1'-carbonyldiimidazole. The magnetic nanoparticles were obtained separately via a coprecipitation mechanism involving inorganic iron salts in an alkaline environment. Four composite nanosponges were prepared by varying the content of magnetic nanoparticles (5 wt% and 10 wt%) in the cyclodextrin- and maltodextrin-based polymer matrix. The magnetic nanosponges were then characterised by FTIR, TGA, XRD, FESEM, and HRTEM analysis. The magnetic properties of the nanosponges were investigated via magnetisation curves collected at RT. Finally, the magnetic nanosponges were loaded with doxorubicin and tested as a drug delivery system. The nanosponges exhibited a loading capacity of approximately 3 wt%. Doxorubicin was released by the loaded nanosponges with sustained kinetics over a prolonged period of time.

14.
Pharmaceutics ; 14(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336058

RESUMO

At present, antibiotic resistance is considered a real problem. Therefore, for decades scientists have been looking for novel strategies to treat bacterial infections. Nisin Z, an antimicrobial peptide (AMP), can be considered an option, but its usage is mainly limited by the poor stability and short duration of its antimicrobial activity. In this context, cyclodextrin (CD)-based nanosponges (NSs), synthesized using carbonyldiimidazole (CDI) and pyromellitic dianhydride (PMDA), were chosen for nisin Z loading. To determine the minimum inhibitory of nisin Z loaded on CD-NS formulations, agar well diffusion plates were used. Then, the bactericide concentrations of nisin Z loaded on CD-NS formulations were determined against Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria, using microdilution brain heart infusion (BHI) and tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The minimum and bactericide inhibitory values of the nisin complex with NSs were potentially decreased against both bacteria, compared with the nisin-free sample, while the nisin complex with ß-CD showed lower antibacterial activity. The antimicrobial effect was also demonstrated by free NSs. Furthermore, the total viable counts (TVCs) antibacterial experiment indicated that the combination of nisin Z in both PMDA and CDI ß-CD-based NSs, especially CDI, can provide a better conservative effect on cooked chicken meat. Generally, the present study outcomes suggest that the cross-linked ß-CD-based NSs can present their own antimicrobial potency or serve as promising carriers to deliver and enhance the antibacterial action of nisin Z.

15.
Polymers (Basel) ; 14(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35160583

RESUMO

The great variability of cancer types demands novel drugs with broad spectrum, this is the case of Nisin, a polycyclic antibacterial peptide that recently has been considered for prevention of cancer cells growth. As an accepted food additive, this drug would be very useful for intestinal cancers, but the peptide nature would make easier its degradation by digestion procedures. For that reason, the aim of present study to investigate the protective effect of two different ß-cyclodextrin-based nanosponges (carbonyl diimidazole and pyromellitic dianhydride) and their anti-cancer enhancement effect of Nisin-Z encapsulated with against colon cancer cells (HT-29). To extend its possible use, a comparison with breast (MCF-7) cancer cell was carried out. The physicochemical properties, loading efficiency, and release kinetics of Nisin complex with nanosponges were studied. Then, tricin-SDS-PAGE electrophoresis was used to understand the effect of NSs on stability of Nisin-Z in the presence of gastric peptidase pepsin. In addition, the cytotoxicity and cell membrane damage of Nisin Z were evaluated by using the MTT and LDH assay, which was complemented via Annexin-V/ Propidium Iodide (PI) by using flowcytometry. CD-NS are able to complex Nisin-Z with an encapsulation efficiency around 90%. A protective effect of Nisin-Z complexed with CD-NSs was observed in presence of pepsin. An increase in the percentage of apoptotic cells was observed when the cancer cells were exposed to Nisin Z complexed with nanosponges. Interestingly, Nisin Z free and loaded on PMDA/CDI-NSs is more selectively toxic towards HT-29 cells than MCF-7 cancer cells. These results indicated that nanosponges might be good candidates to protect peptides and deliver drugs against intestinal cancers.

16.
Chemistry ; 28(6): e202104201, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34870350

RESUMO

Manufactured globally on industrial scale, cyclodextrins (CD) are cyclic oligosaccharides produced by enzymatic conversion of starch. Their typical structure of truncated cone can host a wide variety of guest molecules to create inclusion complexes; indeed, we daily use CD as unseen components of food, cosmetics, textiles and pharmaceutical excipients. The synthesis of active material composites from CD resources can enable or enlarge the effective utilization of these products in the battery industry with some economical as well as environmental benefits. New and simple strategies are here presented for the synthesis of nanostructured silicon and sulfur composite materials with carbonized hyper cross-linked CD (nanosponges) that show satisfactory performance as high-capacity electrodes. For the sulfur cathode, the mesoporous carbon host limits polysulfide dissolution and shuttle effects and guarantees stable cycling performance. The embedding of silicon nanoparticles into the carbonized nanosponge allows to achieve high capacity and excellent cycling performance. Moreover, due to the high surface area of the silicon composite, the characteristics at the electrode/electrolyte interface dominate the overall electrochemical reversibility, opening a detailed analysis on the behavior of the material in different electrolytes. We show that the use of commercial LP30 electrolyte causes a larger capacity fade, and this is associated with different solid electrolyte interface layer formation and it is also demonstrated that fluoroethylene carbonate addition can significantly increase the capacity retention and the overall performance of our nanostructured Si/C composite in both ether-based and LP30 electrolytes. As a result, an integration of the Si/C and S/C composites is proposed to achieve a complete lithiated Si-S cell.


Assuntos
Ciclodextrinas , Silício , Carbono , Eletrodos , Enxofre
17.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641423

RESUMO

Melatonin (MT) is a molecule of paramount importance in all living organisms, due to its presence in many biological activities, such as circadian (sleep-wake cycle) and seasonal rhythms (reproduction, fattening, molting, etc.). Unfortunately, it suffers from poor solubility and, to be used as a drug, an appropriate transport vehicle has to be developed, in order to optimize its release in the human tissues. As a possible drug-delivery system, ß-cyclodextrin (ßCD) represents a promising scaffold which can encapsulate the melatonin, releasing when needed. In this work, we present a computational study supported by experimental IR spectra on inclusion MT/ßCD complexes. The aim is to provide a robust, accurate and, at the same time, low-cost methodology to investigate these inclusion complexes both with static and dynamic simulations, in order to study the main actors that drive the interactions of melatonin with ß-cyclodextrin and, therefore, to understand its release mechanism.


Assuntos
Biologia Computacional/métodos , Sistemas de Liberação de Medicamentos , Melatonina/metabolismo , Simulação de Dinâmica Molecular , beta-Ciclodextrinas/metabolismo , Humanos , Melatonina/química , Solubilidade , beta-Ciclodextrinas/química
18.
Biomolecules ; 11(9)2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34572597

RESUMO

Inflammation is a biological response of the immune system to harmful stimuli. Importantly, inflammation is also a hallmark of several human diseases such as cancer or diabetes. Novel drugs to treat this response are constantly researched, but the formulation is usually forgotten. Cyclodextrins (CDs) are a well-known excipient for complexing and drug delivery. Anti-inflammatory drugs and bioactive compounds with similar activities have been favored from these CD processes. CDs also illustrate anti-inflammatory activity per se. This review tried to describe the capacities of CDs in this field, and is divided into two parts: Firstly, a short description of the inflammation disease (causes, symptoms, treatment) is explained; secondly, the effects of different CDs alone or forming inclusion complexes with drugs or bioactive compounds are discussed.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclodextrinas/farmacologia , Animais , Anti-Inflamatórios/química , Ciclodextrinas/química , Humanos , Inflamação/patologia , Modelos Biológicos
19.
Polymers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064190

RESUMO

Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.

20.
Polymers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067902

RESUMO

Li-O2 batteries represent a promising rechargeable battery candidate to answer the energy challenges our world is facing, thanks to their ultrahigh theoretical energy density. However, the poor cycling stability of the Li-O2 system and, overall, important safety issues due to the formation of Li dendrites, combined with the use of organic liquid electrolytes and O2 cross-over, inhibit their practical applications. As a solution to these various issues, we propose a composite gel polymer electrolyte consisting of a highly cross-linked polymer matrix, containing a dextrin-based nanosponge and activated with a liquid electrolyte. The polymer matrix, easily obtained by thermally activated one pot free radical polymerization in bulk, allows to limit dendrite nucleation and growth thanks to its cross-linked structure. At the same time, the nanosponge limits the O2 cross-over and avoids the formation of crystalline domains in the polymer matrix, which, combined with the liquid electrolyte, allows a good ionic conductivity at room temperature. Such a composite gel polymer electrolyte, tested in a cell containing Li metal as anode and a simple commercial gas diffusion layer, without any catalyst, as cathode demonstrates a full capacity of 5.05 mAh cm-2 as well as improved reversibility upon cycling, compared to a cell containing liquid electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...